skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Michaelides, Angelos"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lian, T (Ed.)
    The fast and accurate simulation of chemical reactions is a major goal of computational chemistry. Recently, the pursuit of this goal has been aided by machine learning interatomic potentials (MLIPs), which provide energies and forces at quantum mechanical accuracy but at a fraction of the cost of the reference quantum mechanical calculations. Assembling the training set of relevant configurations is key to building the MLIP. Here, we demonstrate two approaches to training reactive MLIPs based on reaction pathway information. One approach exploits reaction datasets containing reactant, product, and transition state structures. Using an SN2 reaction dataset, we accurately locate reaction pathways and transition state geometries of up to 170 unseen reactions. In another approach, which does not depend on data availability, we present an efficient active learning procedure that yields an accurate MLIP and converged minimum energy path given only the reaction end point structures, avoiding quantum mechanics driven reaction pathway search at any stage of training set construction. We demonstrate this procedure on an SN2 reaction in the gas phase and with a small number of solvating water molecules, predicting reaction barriers within 20 meV of the reference quantum chemistry method. We then apply the active learning procedure on a more complex reaction involving a nucleophilic aromatic substitution and proton transfer, comparing the results against the reactive ReaxFF force field. Our active learning procedure, in addition to rapidly finding reaction paths for individual reactions, provides an approach to building large reaction path databases for training transferable reactive machine learning potentials. 
    more » « less
    Free, publicly-accessible full text available March 21, 2026
  2. In computational physics, chemistry, and biology, the implementation of new techniques in shared and open-source software lowers barriers to entry and promotes rapid scientific progress. However, effectively training new software users presents several challenges. Common methods like direct knowledge transfer and in-person workshops are limited in reach and comprehensiveness. Furthermore, while the COVID-19 pandemic highlighted the benefits of online training, traditional online tutorials can quickly become outdated and may not cover all the software’s functionalities. To address these issues, here we introduce “PLUMED Tutorials,” a collaborative model for developing, sharing, and updating online tutorials. This initiative utilizes repository management and continuous integration to ensure compatibility with software updates. Moreover, the tutorials are interconnected to form a structured learning path and are enriched with automatic annotations to provide broader context. This paper illustrates the development, features, and advantages of PLUMED Tutorials, aiming to foster an open community for creating and sharing educational resources. 
    more » « less
    Free, publicly-accessible full text available March 7, 2026